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The two-component reaction-diffusion excitable medium is treated numerically in the free boundary limit for
the fast field. We find that the spiral interface is stable for a sufficiently high diffusion constant of the slow
field. The spiral wave~interface! undergoes a core-meander instability via a forward Hopf bifurcation as the
diffusion constant decreases. A further decrease of the diffusion constant is found to result in the onset of
hypermeandering and spiral breakup. We demonstrate quantitative convergence of the dynamics of reaction-
diffusion system to its free boundary limit.@S1063-651X~96!02912-1#

PACS number~s!: 05.40.1j, 82.40.Fp

I. INTRODUCTION

Spiral waves arising in two-dimensional~2D! excitable
media currently attract a great deal of attention. These spirals
appear in the well-known Belousov-Zhabotinsky reaction
@1#, in the catalysis of CO on Pt substrates@2#, in the elec-
trical activity of heart tissues@3#, in the aggregation of amoe-
bae colonies@4#, etc. Excitable reaction-diffusion systems
have been intensively studied both experimentally and ana-
lytically. Significant progress has been achieved through de-
tailed numerical and analytical investigations of generic
reaction-diffusion models@5–7# and canonical experimental
systems@1,2#. It was established that the spirals can exhibit
rich dynamic behavior ranging from periodic and quasiperi-
odic meandering to chaotic hypermeandering and spiral
breakup under certain conditions.

The simplest~yet nontrivial! theory of wave propagation
in excitable media consists of a pair of coupled reaction-
diffusion equations for a fast fieldu ~activator! and a slow
field v ~inhibitor!, respectively@7,8#,

] tu5e¹2u1
f ~u,v !

e
, ~1!

] tv5de¹2v1g~u,v !, ~2!

wheree is a positive parameter andd5Dv /Du is the ratio of
diffusion coefficients of the variablesv andu. In the well-
known FitzHugh-Nagumo~FN! model @9# f53u2u32v
and andg5u2gv1D, with the parametersg andD gov-
erning the kinetics of the medium.

The behavior of the reaction-diffusion system modeled by
Eqs.~1! and~2! is the subject of intensive investigation. The
meandering instability of the spiral core was established both
by direct numerical simulations@10,11# and by numerical
solution of the linearized problem@12#. However, the above
methods are restricted for not too small value ofe. A com-
prehensive understanding of the spiral dynamics in the true
asymptotic limit of smalle is still lacking.

In most practically important cases the parametere!1
~typically e;102421022). This allows an effective reduc-
tion of the dynamics of a two-component medium to afree
boundary problemfor a narrowO(e) interface separating

regions of ‘‘excited’’ and ‘‘quiescent’’ phases of the fast
field u coupled with the slowly varying fieldv. The dynam-
ics of the curved interface is then given by the eikonal equa-
tion

cn5c~v I !2ek, ~3!

wherev I is the value of fieldv at the interface,c(v I) is the
interfacial velocity in the 1D case~found from a solvability
condition of the corresponding one-dimensional problem!,
cn is the velocity normal to the interface, andk is the local
curvature of the interface@7,8#. Moreover, fore!1, v devi-
ates only slightly from the ‘‘stall’’ valuevs , defined by
c(vs)50. In the limit of very smalle the equations can be
drastically simplified, bringing the system to a generic form.
This can be done using a scaling, suggested by Fife@13#:
v2vs5e1/3ṽ, x5e2/3x̃, t5e1/3t̃, and c(v I)'e1/3cvṽ I ,
wherecv[dc(v)/dvuv5vs

@vs andcv are constants defined
by particular functionsf (u,v) and g(u,v) in Eqs. ~1! and
~2!; for instance, in the FN modelvs50 andcv521/A2].
After dropping the tildes, the transformed system reads@to
O(e1/3)#

] tv5g61dDv2a6e1/3v, ~4!

cn5cvv I2k, ~5!

where the signs1 and 2 correspond to the excited and
quiescent regions, respectively.g6[g„u6(vs),vs…5const
anda652dg6/dvs5 const. For convenienceg6 may be
normalized by choosingg12g251, which, in the zeroth
order ofe1/3, leaves only two independent dynamical param-
eters in Eqs.~4! and ~5!, which areg1 andd. In a true Fife
limit of e1/3!1, the last term in Eq.~4! can be dropped and
the system becomes universal~or model independent! @13#.
However, even for very smalle;102421023, the last term
is approximatelye1/3, which is of order 0.1 and therefore is
not formally small numerically. As a result, significant nu-
merical discrepancies between the behavior of the reaction-
diffusion system~1! and~2! and the simplified model~4! and
~5! may have originated from neglecting this term.

The diffusionless (d50) free boundary problem is not
self-consistent since the interface develops a cusp~region of
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infinite curvature! at the spiral tip. This singularity can be
avoided by either including finite diffusion in the slow vari-
able (dÞ0) or taking into account the finite value ofe at the
cusp. The latter approach is much more complicated since it
breaks locally the interfacial approximation, and we will
concentrate entirely on the former case.

In the limit of d!1 butd@e, the problems of spiral selec-
tion and stability can be solved fully analytically@5,14#.
However, analytic results for this limit always predict a
single unstable mode of the spiral, which is contradictory to
the fact that in numerical simulations and in experiments the
spiral undergoes a Hopf bifurcation from steady rotation of
the core to meandering, which represents a pair of conjugate
unstable modes.

The ~quasistationary! finite d free boundary problem was
recently considered by Kessler and Kupferman@15,16#. They
have solved problem of the frequency selection and the sta-
bility of the spiral using a different numerical approach@15#.
They have also found the Hopf bifurcation at finited.

However, important questions such as the long-time spiral
behavior and the emergence of spiral from ‘‘nonspiral’’ ini-
tial conditions cannot be answered in the framework of qua-
sistationary theory. In particular, it is not clear whether the
instability found in@16# really leads to supercritical bifurca-
tion or destroys the spiral as happens in the complex
Ginzburg-Landau equation@17#. For this purpose one needs
to solve the time-dependent free boundary problem~4! and
~5!.

In the present paper we treat the free-boundary problem
by direct simulations of Eqs.~4! and ~5! for finite d. We
consider a nonclosed interface in a rectangular domain. We
develop a numerical procedure to handle the reconnection
and tearing off of the interface at the domain boundary,
which is a new element in the numerical study of free bound-
ary problems~previous methods were restricted to closed
interfaces@18,19#!. We present numerical evidence that the
finite diffusion free boundary problem is sufficient to de-
scribe the formation of spiral waves in the generic reaction-
diffusion excitable media. We have found that in a certain
region of parametersg1,d generic initial conditions evolve
into a steadily rotating spiral. We also found that the spiral
wave undergoes a core-meander instability via a forward
Hopf bifurcation asd decreases. Therefore, near the thresh-
old the instability is saturated and does not destroy the spiral.
A further decrease ofd results in a transition to hypermean-
dering and finally to the breakup of the spiral. Our results are
consistent with numerical simulations of the original
reaction-diffusion system and experiments and therefore re-
solve the existing controversy in the theory of spiral waves
in the free boundary limit.

II. NUMERICAL METHODS

We perform simulations of the system~4! and ~5! for
e50, using a mixed technique, which solves the diffusion
equation ~4! for the field v, determined at the sites of a
square grid, and the nonlinear interfacial equation~5!, sepa-
rating excited and quiescent regions. The source term in Eq.
~4! takes the valuesg1(g2) in the excited~quiescent! re-
gion, respectively. The curved interface is determined by
points distributed along the interface, which is general do not

coincide with the grid sites. These interfacial points are
moved according to Eq.~5!. The details of the numerical
technique are described in the Appendix.

We consider a square domain on a 2D grid, with the in-
terface attached with both of its ends to the boundaries of the
domain. We chooseno-fluxboundary conditions forv ~i.e.,
¹v on the domain boundary is always parallel to the bound-
ary!, which forces the interface to be perpendicular to the
boundary at both points of attachment. Interfacial points are
distributed along the interface, with their positions param-
etrized by the arclengths. After the spiral is formed, we call
the part of the interface where the excited region is convex
into the quiescent one thefront and the part where it is con-
cave theback. We choose the arclength to increase from the
front end of the interface to its back end.

We have found that there is a numerical instability of the
points along the interface, which leads to the ‘‘leakage’’ of
the points out of the tip. This can be explained by the fact
that the error in the calculation of curvatures and interfacial
normals increases with curvature. In order to suppress this
instability, we redistribute the points along the interface at
every time step at equal distances along the interface.

The situation when an interior point of the interface
touches the domain boundary needs special consideration.
When such an event occurs, we cut the part of the interface
beyond the new point of attachment to the boundary. For-
mally we would have to keep track of the remainder there-
after, but, as we know from the theory of generic reaction-
diffusion excitable media~1! and ~2!, the influence of the
remainder decays superexponentially@20#. Moreover, due to
the active~or invasive! character of the spiral, which emits
waves outward, the influence of the cut pieces is vanishingly
small. Indeed, the perturbations produced by the cut piece
propagate against the direction of the group velocity and
rapidly decay. After such a cutoff is performed we have to
rebuild the functiong6(x,y) in the whole bulk. The position
of the spiral’s core is tracked as a point with zero normal
velocity cn by linear ~cubic! interpolation between corre-
sponding interfacial points, nearest to the core.

III. MEANDERING INSTABILITY
OF THE SPIRAL’S CORE

We have performed numerical simulations, using the de-
scribed algorithm. We have studied systematically the dy-
namics of spiral in a wide range of parametersg1,d. In order
to generate stationary spiral solution we took generic non-
spiral initial conditions for the interface~for example, a
straight line!. For sufficiently large values ofd ~see below!
these initial conditions gradually evolved to a steadily rotat-
ing spiral. A stable spiral solution, obtained in this way, is
shown in Fig. 1.

However, we have observed a core instability leading to
meandering asd decreases. A typical trajectory of the un-
stable~meandering! spiral core is given in Fig. 2~a!. We have
verified by systematic control of the amplitude of the core
meander that the instability occurs via a forward Hopf-like
bifurcation, as it is observed in direct numerical simulations
of the Eqs.~1! and~2! and experiments. The stability limit of
the core meander in thed-g1 plane is shown in Fig. 3. Near
the threshold this instability is saturated at some finite radius
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of the core meandering and does not destroy the spiral. A
further decrease ofd leads to a transition to hypermeander-
ing @Fig. 2~b!#, when many core modes are excited simulta-
neously. In this case the spiral’s core performs a very com-
plicated ~nonperiodic! motion. Finally, for a very small
diffusion the radius of the meandering becomes very large
and the spiral annihilates at the boundary. It is plausible to
assume that the radius of meander diverges at some finite
value of d, which could be a fingerprint of the stationary
instability of the spiral core found in the small-d limit @5#.

IV. COMPARISON WITH THE DYNAMICS
OF THE REACTION-DIFFUSION SYSTEM

We have verified our results by the direct simulations of
the original model~1! and ~2! for finite e. We applied the
EZ-spiral code of Barkley@11# for the model given by
the functions f (u,v)5u(u21)@u2uth(v)# and g(u,v)
5u2v, where uth(v)5(v1b)/a. In this model
g1512a/21b,g25g121, andcv52A2/a. We can see
very slow convergence of the bifurcation lines obtained from
the Eqs.~1! and ~2! to that of the free boundary problem as
e decreases~see Fig. 3!. It is technically difficult to obtain
quantitative agreement fore50 because it would require
very smalle(;1026), which makes Barkley’s code drasti-
cally time consuming.

In order to reduce the discrepancy between the reaction-
diffusion system and the free boundary problem due to finite
e1/3, we took into account the leading correction2a6e1/3v
@the last term in Eq.~4!#. The constantsa6 are determined
by the particular model. In Barkley’s modela6[a51 and
the value ofcv equals2A2/a, which is different from that
for the FN model, given bycv521/A2. In the zeroth-order
problem~4! and ~5! cv may be scaled out, so that only one

FIG. 2. Trajectory of spiral tip in~a! meandering and~b! hyper-
meandering regimes. For both casesg150.7.d is ~a! 0.48 and~b!
0.4, respectively. Other parameters are the same as in Fig. 1.

FIG. 3. Lines of core-meander bifurcation in thed-g1 plane.
Solid line corresponds to free boundary simulations with the same
cv , domain size, and number of grid points as in Fig. 1. Dashed and
dot-dashed lines correspond to EZ simulations of the original model
~1! and ~2! with e50.002 ande50.008, respectively.

FIG. 1. Gray-coded snapshot ofv field ~black corresponds to the
maximum value and white to the minimum value! and the interface
in free boundary simulations. The parameters of the simulations are
the square domain, 20320; number of grid points, 1293129;
d50.3;g150.63;cv521/A2; and the interface presented contains
155 interfacial points.
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model-dependent parameterg1 is left. Therefore, we can
changev, x, t, andcv in such a way that in rescaled vari-
ables Barkley’s model will havecv521/A2, but the con-
stanta will be rescaled. Straightforward calculations result
in a5(a/2)2/3.

In Fig. 4 we compare the results of the simulations of the
modified ~including the2ae1/3v term! model ~4! and ~5!
with the results of the EZ simulations of the original model
~1! and~2! for various values ofa. One can see a significant
improvement with respect to the prior results fora50.

V. CONCLUSION

We have presented the numerical evidence that the finite
diffusion free boundary problem is sufficient and consistent
for the description of spiral waves in generic reaction-
diffusion excitable media. We have found by direct numeri-
cal simulations a transition to steady meandering of the spiral
core via a supercritical Hopf bifurcation. We have observed a
transition to hypermeandering and final breakup of the spiral
wave when the diffusion of the slow variable decreases. Thus
we resolve the existing controversy in the theory of spiral
waves in the small-d limit, predicting always a stationary
instability of the spiral’s core. We have also shown that the
higher-order correction to the free boundary problem due to
finite e is necessary to achieve quantitative agreement with
the results for the reaction-diffusion system~1! and~2!. Our
results, implemented for a two-component reaction-diffusion
system, can be straightforwardly generalized for higher num-
bers of slow fields. This could be useful to study such phe-
nomena as transversal front instability, transition from lamel-
lar to labyrinthine patterns@21#, and spiral competition@22#.
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APPENDIX A

We solve the diffusion equation~4! using a pseudospec-
tral approach, which consists of the following procedure.
The field v on the grid is transformed into inverse Fourier
space, so that the partial differential equation~4! for
v(x,y) is replaced by a set of ordinary differential equations
for its harmonicsv̄kx ,ky:

] tv̄kx ,ky5ḡkx ,ky2d k̂2v̄kx ,ky, ~A1!

where k̂5(kx ,ky) is the corresponding wave vector and
ḡkx ,ky are the harmonics ofg6(x,y). One immediately
writes down the general solution of Eq.~A1! on the interval
(t;t1Dt):

v̄kx ,ky~ t1Dt !5e2d~kx
2
1ky

2
!DtF v̄kx ,ky~ t !

1E
t

t1Dt

dt8ḡkx ,ky~ t8!ed~kx
2
1ky

2
!~ t82t !G .

~A2!

By virtue of the small value ofDt this turns into the implicit
difference scheme~in the trapezoid approximation!

v̄kx ,ky~ t1Dt !5e2d~kx
2
1ky

2
!DtF v̄kx ,ky~ t !1

Dt

2
ḡkx ,ky~ t !G

1
Dt

2
ḡkx ,ky~ t1Dt !. ~A3!

In order to find v(t1Dt), one has to calculatev̄(t), the
Fourier representation ofv(t), then calculatev̄(t1Dt) ac-
cording to ~A3!, and then return to real space. This proce-
dure, however, remains unclosed without consistent updating
of the interface to determine the functiong6(x,y). This
problem requires careful consideration.

We proceed in the following way. Initially the 2D func-
tion g6(x,y) is formed by setting it to beg1 at the ‘‘inter-
nal’’ ~excited! and g2 at the ‘‘external’’ ~quiescent! grid
points and its Fourier representationsḡkx ,ky are calculated
given the fixed position of the interface.

The outer normaln i5(nx
i ,ny

i ) and curvatureki of the
interface are calculated at thei th interfacial point as func-
tions of arclengthsi through the derivatives of the coordi-
natesx andy at the interface with respect tos, using cubic
spline interpolation:

nx
i 5

yi112yi

si112si
2S yssi3 1

yss
i11

6 D ~si112si !,

ny
i 52

xi112xi

si112si
1S xssi3 1

xss
i11

6 D ~si112si !,

ki5ny
i yss

i 2nx
i xss

i . ~A4!

As a next step, the fieldv at the gridpoints is updated
according to the pseudospectral procedure described above.
Fourier transformations are performed by a real cosine fast
Fourier transform routine~because of the no-flux boundary

FIG. 4. g1 at the bifurcation point at various values ofae1/3 and
for d50.4. Other parameters are the same as in Fig. 1. Solid and
dashed lines result from the free boundary simulations and EZ
simulations, respectively.
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conditions!. Then values ofv at the interfacial points are
found using bilinear~or bicubic! interpolation between near-
est grid points. At this stage one has all the information
needed to calculate the new position of the interface accord-
ing to Eq. ~5!. This is done by calculating the shift of each
interfacial point in the direction of the outer normal by the

distance cnDt. We do not need to perform the time-
consuming procedure of ‘‘filling up’’ the lattice withg6’s at
each time step. Instead, we change the values of the function
g6(x,y) from g1tog2, and vice versa, at the grid points
within the narrow band between the old and the new posi-
tions of the interface.
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